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Quantifying and interpreting collective behavior in financial markets
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Firms having similar business activities are correlated. We analyze two different cross-correlation matricesC
constructed from~i! 30-min price fluctuations of 1000 US stocks for the two-year period 1994–95 and~ii !
one-day price fluctuations of 422 US stocks for the 35-year period 1962–96. We find that the eigenvectors of
C corresponding to the largest eigenvalues allow us to partition the set of all stocks into distinct subsets. These
subsets are similar to business sectors, and are stable for extended periods of time. We find that price fluctua-
tions of these subsets are characterized by power-law decaying time correlations, reminiscent of strongly
interacting systems.
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The internal structure of a complex system manifests
self in correlations among its constituents. In complex phy
cal systems, interactions between constituents cause ‘‘co
tive modes’’ having special statistical properties which refl
the underlying dynamics. Can we quantify collective mov
ment of stock prices in analogous terms?

To address this question, we analyze the equal-time
relation matrixC constructed from the price fluctuations of
large number of stocks. First, we find that the ‘‘collecti
modes’’ for the stock market problem partition the set of
stocks studied, into distinct subsets. Typically, these sub
are formed by combinations of related industries, and
some cases, they go beyond grouping by industry. Due
company diversification, the traditional partitioning of firm
into subsets by products and services is difficult and so
times arbitrary, and thus our results could be viewed a
‘‘statistical alternative to traditional industry classification
@1#. Furthermore, we find that the price fluctuations of t
collective modes display long-range power-law time corre
tions, in sharp contrast to individual stocks@2#. Collective
modes in physical systems display time correlations wh
persist on much larger time scales than any individual u
Motivated by this analogy, we start with an interactin
stocks framework and outline one possible mechanism
could prove useful in understanding the distinct statistics
collective price fluctuations.

We first define the cross-correlation matrixC with ele-
ments Ci j [@^GiGj&2^Gi&^Gj&#/s is j , where s i is the
standard deviation of price fluctuationsGi(t)[ ln Si(t1Dt)
2ln Si(t) ~returns!, Si(t) denotes the price of stocki
51, . . . ,N, and^ . . . & denotes a time average over the p
riod studied. To investigate correlations on different tim
scales, we analyze~i! 30-min returns ofN51000 largest
stocks for the two-year period 1994–95 and~ii ! daily returns
of N5422 stocks for the 35-year period 1962–96@3#.

Next, we diagonalizeC and rank-order its eigenvalueslk
such thatlk11.lk ; the corresponding eigenvectors are d
noteduk. We then analyze the components of thosedeviating
eigenvectorswhose eigenvalues are larger than the up
bound for uncorrelated time series@4,5#. A direct examina-
tion of these eigenvectors, however, does not yield a strai
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forward interpretation of their economic relevance. To int
pret their meaning, we note that the largest eigenvalue is
order of magnitude larger than the others, which constra
the remainingN21 eigenvalues since TrC5N. Thus, in or-
der to analyze the contents of the deviating eigenvectors
first remove the effect of the largest eigenvalue@6#.

To analyze the information contained in the eigenvect
uk, we partition the 1000 stocks into groups labeledl
51 . . . ,75~comprisingNl stocks each! according to the first
two digits of their Standard Industrial Classification~SIC!
code, which classifies major industry groups. We defin
projection matrixP, with elementsPli 51/Nl if stock i be-
longs to groupl and Pli 50 otherwise. For each deviatin
eigenvector uk, we compute the contribution Xl

k

[( i 51
N Pli (ui

k)2 of each industry groupl @7#. The above pro-
cedure of computingXl

k is analogous to the analysis of wav
functions in disordered systems, where one calculates
probability of finding a particle in a given region.

Figure 1 showsXl
k for the ten largest eigenvectors aft

excluding the influence of the largest eigenvalue. The con
butionXl

999 shows several industries. We examine the sign
cant contributors and find mainly stocks with large mark
capitalization~Fig. 2!. We analyzeXl

k for the remainder of
the deviating eigenvectors and find a significant ‘peak’
distinct values of the SIC code, suggesting that these eig
vectors correspond to distinct industry groups@8#.

One deviating eigenvectoru995 displays large values o
Xl

k for the heavy construction and telecommunication ind
tries. An examination of these firms shows significant bu
ness activity in Latin America@9#. Another interesting case
corresponds to eigenvectorsu996 and u997, both of which
contain a mixture of stocks of gold-mining firms and banki
firms, which separate when we compute the symmetric
antisymmetric combinations 1/A2(u9966u997). The other de-
viating eigenvectors display technology, metal mining, ba
ing, petroleum refining, auto manufacturing, drug manuf
turing, and paper manufacturing firms~Fig. 1!.

We next focus on the interpretation of the largest eig
valuel1000. Using the eigenvectoru1000, we construct a time
series G(1000)(t)[( i 51

1000ui
1000Gi(t). We then compare
©2001 The American Physical Society06-1
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FIG. 1. ContributionXl
k to industry sectorl of eigenvectoruk for

the deviating eigenvectors shows marked peaks at distinct valu
SIC code, for all butu999 which contains stocks with large capital
zations as significant contributors.

FIG. 2. All 103 eigenvector components ofu999 plotted against
market capitalization~in units of US Dollars! shows that large firms
contribute more than small firms. The straight line, which show
logarithmic fit, is a guide to the eye.
03510
G(1000)(t) with the returnsGSP(t) of the S&P 500 index, a
benchmark for gauging the performance of the entire
stock market. RegressingG(1000)(t) againstGSP(t) shows a
scatter around a linear fit with slope 0.8560.09 ~Fig. 3!.
Thus, we interpret the eigenvectoru1000 as the influence of
the entire market that is common for all stocks@4,5#.

Next, we examine whether the eigenvectorsuk corre-
sponding to business sectors remain stable in time@10#. Par-
titioning the year 1994 into two six-month periods,A andB,
we calculate the corresponding eigenvectorsuA and uB of
the cross-correlation matrices and quantify the time stab
by calculating the magnitude of the scalar productsOi j

[uuA
i uB

j u for the 20 largest eigenvalues. Perfect time stabi
would meanOi j 5d i j . For i 51000, we findOii 50.93, indi-
cating almost perfect stability. We find thatOii decreases as
i decreases from 1000~Fig. 4!. Extending this analysis to

of

a

FIG. 3. S&P 500 returnsGSP(t) regressed against the retur
G(1000)(t) of the portfolio defined by the eigenvectoru1000. Both
axes are scaled by their respective standard deviations. A li
regression yields a slope 0.8560.09, showing a large degree o
correlation.

FIG. 4. Comparison of eigenvectors for different time periodsA
~first half of 1994! andB ~second half of 1994! by means of their
scalar productOi j , represented on a greyscale, where zero~black!
corresponds to no overlap, and white~one! to perfect overlap. Note
that the eigenvectors corresponding to the four largest eigenva
have a large degree of time stability.
6-2
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daily returns using database~ii ! shows that the eigenvector
corresponding to the largest three eigenvalues are stabl
as many as ten years.

How can we understand correlations between stocks
physical systems, one starts from the interactions betw
the constituents, and then relates interactions to correl
‘‘modes’’ of the system. Here, we ask if an analogous mec
nism involving ‘‘interactions’’ can give rise to the correlate
behavior that we find. Interactions arise when two compan
are doing business together, compete for the same marke
when they are perceived by investors to be linked.

One generic model for interacting physical systems is
soft spin model@11#, which we apply to describe the dynam
ics of ‘‘instantaneous’’ returnsgi(t)[d/dt ln Si(t); we write a
stochastic differential equation forgi(t),

to] tgi~ t !52r igi~ t !2kgi
3~ t !1(

j
Ji j gj~ t !1

1

to
j i~ t !,

~1!

wherej i(t) are Gaussian random variables with correlat
function ^j i(t)j j (t8)&5d i j tod(t2t8), and to sets the time
scale of the problem. In the context of a soft spin model,
first two terms on the right-hand side of Eq.~1! arise from
the derivative of a double-well potential, enforcing the so
spin constraint. The interaction among soft spins is given
the couplingsJi j . In the absence of the cubic term, an
without interactions,to /r i are relaxation times of the
^gi(t)gi(t1t)& correlation function. A similar differentia
equation, without the couplings, was derived in a financ
context to describe the dynamics of returns, using a quad
instead of a cubic term@12#.

As the coupling strengths increase, the soft-spin sys
undergoes a transition to an ordered state with perma
local magnetizations@11#. At the transition point, the spin
dynamics are very ‘‘slow’’ as reflected in a power law dec
of the spin autocorrelation function in time. To test wheth
this signature of strong interactions is present for the st
market problem, we analyze the autocorrelation functio
c(k)(t)[^G(k)(t)G(k)(t1t)&, whereG(k)(t)[( i 51

1000ui
kGi(t)

is the time series defined by eigenvectoruk. Instead of ana-
lyzing c(k)(t) directly, we apply the detrended fluctuatio
analysis~DFA! method@13#. Figure 5 shows that the corre
lation functionsc(k)(t) indeed decay as power laws for th
deviating eigenvectorsuk, which is in sharp contrast to th
behavior ofc(k)(t) for the rest of the eigenvectors and th
autocorrelation functions of individual stocks, which sho
only short-range correlations. We interpret this as evide
for strong interactions.

In the absence of the cubic term, we obtain only expon
tially decaying correlation functions for the ‘‘modes’’ corre
sponding to the large eigenvalues, which is inconsistent w
our finding of power-law correlations.

In summary, given only the change in price of a stock, a
no additional information about that stock, we can partiti
the set of all 103 stocks studied into subsets whose identit
correspond well to conventionally identified sectors of e
nomic activity. Motivated by the concept of critical slowin
03510
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down in correlated physical systems, we analyze the t
evolution of ‘‘collective modes’’ corresponding to these se
tors, and find that they are characterized by power-law
caying correlation functions, which is consistent with t
possibility that cross-correlations in the stock market ar
not just from common influences such as relevant ne
breaks~the common view!, but also from interactions be
tween stock price fluctuations.
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ceira, and especially L. A. N. Amaral and X. Gabaix f
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FIG. 5. ~a! Autocorrelation functionc(k)(t) of the time series
defined by the eigenvectoru999. The solid line shows a fit to a
power-law functional formt2gk, whereby we obtain valuesgk

50.6160.06 for k5999. ~b! To quantify the exponentsgk for all
k51, . . .,1000 eigenvectors, we use the method of DFA analy
@13# often used to obtain accurate estimates of power-law corr
tions. We plot the detrended fluctuation functionF(t) as a function
of the time scalet for each of the 1000 time series. Absence
long-range correlations would implyF(t);t0.5, whereasF(t)
;tn with 0.5,n<1 implies power-law decay of the correlatio
function with exponentg5222n. We plot the exponentsn as a
function of the eigenvalue and find values exponentsn significantly
larger than 0.5 for all the deviating eigenvectors. In contrast, for
remainder of the eigenvectors, we obtain the mean valuen50.44
60.04, comparable to the valuen50.5 for the uncorrelated case.
6-3



ot
Th
ic
th

y

nd

f th
an
,
ge

o-

n

the
an-

this
so
ere
alf

S.

.-P.

RAPID COMMUNICATIONS

GOPIKRISHNAN, ROSENOW, PLEROU, AND STANLEY PHYSICAL REVIEW E64 035106~R!
@1# E. J. Elton and M. J. Gruber,Modern Portfolio Theory and
Investment Analysis~Wiley and Sons, New York, 1996!, p.
445.

@2# For a recent review, see J. D. Farmer, Comput. Sci. Eng.1, 26
~1999!.

@3# The 30-min data analyzed are from the Trades and Qu
database published by the New York Stock Exchange.
daily data are from the Center for Research in Securities Pr
~CRSP! database. In both cases, only those companies
survive the entire period are considered in our analysis.

@4# L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, Ph
Rev. Lett.83, 1467~1999!.

@5# V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, a
H. E. Stanley, Phys. Rev. Lett.83, 1471~1999!.

@6# The presence of a very large eigenvalue, by preservation o
trace Tr(C)5N, tends to cause the other large eigenvalues
eigenvectors to be influenced by randomness. Therefore
order to remove the effect of the ‘‘market mode’’ on other lar
eigenvalues, we implement the linear regressionGi(t)5a i

1b iG
(1000)(t)1e i(t), where G(1000)[( i 51

1000ui
1000Gi(t). We

then recompute the correlation matrixC using the residuals
03510
es
e

es
at

s.

e
d
in

e i(t). Alternatively, removing the intradaily patterns in abs
lute values ofGi(t) using the procedure of Y. Liuet al., Phys.
Rev. E60, 1390~1999! also yields similar results.

@7# The choice of weights (ui
k)2 is because of the normalizatio

( i 51
N (ui

k)251.
@8# An interesting classification of stocks into sectors using

concept of ultrametric distances was obtained by R. N. M
tegna, Eur. Phys. J. B11, 193 ~1999!.

@9# At first sight, there seems to be no obvious reason why
particular geographical region should play a significant role,
we examine news archives and find, interestingly, that th
was a large currency devaluation in Mexico in the second h
of 1994.

@10# Time evolution of the largest eigenvalues are analyzed in
Drozdzet al., Physica A287, 440 ~2000!.

@11# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435
~1977!; K. H. Fisher and J. A. Hertz,Spin Glasses~Cambridge
University Press, New York, 1991!.

@12# J. D. Farmer, e-print adap-org/9812005; R. Cont and J
Bouchaud, Eur. Phys. J. B6, 543 ~1998!.

@13# C. K. Peng,et al., Phys. Rev. E49, 1685~1994!.
6-4


